Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
JHEP Rep ; 6(1): 100960, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38234410

RESUMO

The process of dead cell clearance by phagocytic cells, called efferocytosis, prevents inflammatory cell necrosis and promotes resolution and repair. Defective efferocytosis contributes to the progression of numerous diseases in which cell death is prominent, including liver disease. Many gaps remain in our understanding of how hepatic macrophages carry out efferocytosis and how this process goes awry in various types of liver diseases. Thus far, studies have suggested that, upon liver injury, liver-resident Kupffer cells and infiltrating monocyte-derived macrophages clear dead cells, limit inflammation, and, through macrophage reprogramming, repair liver damage. However, in unusual settings, efferocytosis can promote liver disease. In this review, we will focus on efferocytosis in various types of acute and chronic liver diseases, including metabolic dysfunction-associated steatohepatitis. Understanding the mechanisms and consequences of efferocytosis by hepatic macrophages has the potential to shed new light on liver disease pathophysiology and to guide new treatment strategies to prevent disease progression.

2.
Mol Ther Methods Clin Dev ; 31: 101165, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38144682

RESUMO

Nonalcoholic steatohepatitis (NASH) is emerging as the most common cause of liver disease. Although many studies in mouse NASH models have suggested therapies, translation to humans is poor, with no approved drugs for NASH. One explanation may lie in differences between mouse and human hepatocytes. We used NASH diet-fed chimeric mice reconstituted with human hepatocytes (hu-liver mice) to test a mechanism-based hepatocyte-targeted small interfering RNA (siRNA), GalNAc-siTaz, shown previously to block the progression to fibrotic NASH in mice. Following ablation of endogenous hepatocytes, male mice were reconstituted with human hepatocytes from a single donor with the rs738409-C/G PNPLA3 risk variant, resulting in ∼95% human hepatocyte reconstitution. The mice were then fed a high-fat choline-deficient l-amino acid-defined diet for 6 weeks to induce NASH, followed by six weekly injections of GalNAc-siTAZ to silence hepatocyte-TAZ or control GalNAc-siRNA (GalNAc-control) while still on the NASH diet. GalNAc-siTAZ lowered human hepatic TAZ and IHH, a TAZ target that promotes NASH fibrosis. Most important, GalNAc-siTAZ decreased liver inflammation, hepatocellular injury, hepatic fibrosis, and profibrogenic mediator expression versus GalNAc-control, indicating that GalNAc-siTAZ decreased the progression of NASH in mice reconstituted with human hepatocytes. In conclusion, silencing TAZ in human hepatocytes suppresses liver fibrosis in a hu-liver model of NASH.

3.
Nat Metab ; 5(12): 2206-2219, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012414

RESUMO

The clearance of apoptotic cells by macrophages (efferocytosis) prevents necrosis and inflammation and activates pro-resolving pathways, including continual efferocytosis. A key resolution process in vivo is efferocytosis-induced macrophage proliferation (EIMP), in which apoptotic cell-derived nucleotides trigger Myc-mediated proliferation of pro-resolving macrophages. Here we show that EIMP requires a second input that is integrated with cellular metabolism, notably efferocytosis-induced lactate production. Lactate signalling via GPR132 promotes Myc protein stabilization and subsequent macrophage proliferation. This mechanism is validated in vivo using a mouse model of dexamethasone-induced thymocyte apoptosis, which elevates apoptotic cell burden and requires efferocytosis to prevent inflammation and necrosis. Thus, EIMP, a key process in tissue resolution, requires inputs from two independent processes: a signalling pathway induced by apoptotic cell-derived nucleotides and a cellular metabolism pathway involving lactate production. These findings illustrate how seemingly distinct pathways in efferocytosing macrophages are integrated to carry out a key process in tissue resolution.


Assuntos
Fagocitose , Humanos , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Necrose/metabolismo , Nucleotídeos/metabolismo , Proliferação de Células
4.
Circulation ; 148(22): 1764-1777, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37781816

RESUMO

BACKGROUND: Clonal hematopoiesis (CH) has emerged as an independent risk factor for atherosclerotic cardiovascular disease, with activation of macrophage inflammasomes as a potential underlying mechanism. The NLRP3 (NLR family pyrin domain containing 3) inflammasome has a key role in promoting atherosclerosis in mouse models of Tet2 CH, whereas inhibition of the inflammasome product interleukin-1ß appeared to particularly benefit patients with TET2 CH in CANTOS (Cardiovascular Risk Reduction Study [Reduction in Recurrent Major CV Disease Events]). TET2 is an epigenetic modifier that decreases promoter methylation. However, the mechanisms underlying macrophage NLRP3 inflammasome activation in TET2 (Tet methylcytosine dioxygenase 2) deficiency and potential links with epigenetic modifications are poorly understood. METHODS: We used cholesterol-loaded TET2-deficient murine and embryonic stem cell-derived isogenic human macrophages to evaluate mechanisms of NLRP3 inflammasome activation in vitro and hypercholesterolemic Ldlr-/- mice modeling TET2 CH to assess the role of NLRP3 inflammasome activation in atherosclerosis. RESULTS: Tet2 deficiency in murine macrophages acted synergistically with cholesterol loading in cell culture and with hypercholesterolemia in vivo to increase JNK1 (c-Jun N-terminal kinase 1) phosphorylation and NLRP3 inflammasome activation. The mechanism of JNK (c-Jun N-terminal kinase) activation in TET2 deficiency was increased promoter methylation and decreased expression of the JNK-inactivating dual-specificity phosphatase Dusp10. Active Tet1-deadCas9-targeted editing of Dusp10 promoter methylation abolished cholesterol-induced inflammasome activation in Tet2-deficient macrophages. Increased JNK1 signaling led to NLRP3 deubiquitylation and activation by the deubiquitinase BRCC3 (BRCA1/BRCA2-containing complex subunit 3). Accelerated atherosclerosis and neutrophil extracellular trap formation (NETosis) in Tet2 CH mice were reversed by holomycin, a BRCC3 deubiquitinase inhibitor, and also by hematopoietic deficiency of Abro1, an essential scaffolding protein in the BRCC3-containing cytosolic complex. Human TET2-/- macrophages displayed increased JNK1 and NLRP3 inflammasome activation, especially after cholesterol loading, with reversal by holomycin treatment, indicating human relevance. CONCLUSIONS: Hypercholesterolemia and TET2 deficiency converge on a common pathway of NLRP3 inflammasome activation mediated by JNK1 activation and BRCC3-mediated NLRP3 deubiquitylation, with potential therapeutic implications for the prevention of cardiovascular disease in TET2 CH.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Dioxigenases , Hipercolesterolemia , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Colesterol/metabolismo , Hematopoiese Clonal , Enzimas Desubiquitinantes , Proteínas de Ligação a DNA/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
5.
Nat Cardiovasc Res ; 2(6): 572-586, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37539077

RESUMO

Clonal hematopoiesis (CH) increases the risk of atherosclerotic cardiovascular disease possibly due to increased plaque inflammation. Human studies suggest that limitation of interleukin-6 (IL-6) signaling could be beneficial in people with large CH clones, particularly in TET2 CH. Here we show that IL-6 receptor antibody treatment reverses the atherosclerosis promoted by Tet2 CH, with reduction of monocytosis, lesional macrophage burden and macrophage colony-stimulating factor 1 receptor (CSF1R) expression. IL-6 induces expression of Csf1r in Tet2-deficient macrophages through enhanced STAT3 binding to its promoter. In mouse and human Tet2-deficient macrophages, IL-6 increases CSF1R expression and enhances macrophage survival. Treatment with the CSF1R inhibitor PLX3397 reversed accelerated atherosclerosis in Tet2 CH mice. Our study demonstrates the causality of IL-6 signaling in Tet2 CH accelerated atherosclerosis, identifies IL-6-induced CSF1R expression as a critical mechanism and supports blockade of IL-6 signaling as a potential therapy for CH-driven cardiovascular disease.

6.
Science ; 381(6661): eadh5207, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37651538

RESUMO

Apolipoprotein B (apoB)-lipoproteins initiate and promote atherosclerotic cardiovascular disease. Plasma tissue plasminogen activator (tPA) activity is negatively associated with atherogenic apoB-lipoprotein cholesterol levels in humans, but the mechanisms are unknown. We found that tPA, partially through the lysine-binding site on its Kringle 2 domain, binds to the N terminus of apoB, blocking the interaction between apoB and microsomal triglyceride transfer protein (MTP) in hepatocytes, thereby reducing very-low-density lipoprotein (VLDL) assembly and plasma apoB-lipoprotein cholesterol levels. Plasminogen activator inhibitor 1 (PAI-1) sequesters tPA away from apoB and increases VLDL assembly. Humans with PAI-1 deficiency have smaller VLDL particles and lower plasma levels of apoB-lipoprotein cholesterol. These results suggest a mechanism that fine-tunes VLDL assembly by intracellular interactions among tPA, PAI-1, and apoB in hepatocytes.


Assuntos
Apolipoproteínas B , Aterosclerose , Hepatócitos , Lipoproteínas VLDL , Inibidor 1 de Ativador de Plasminogênio , Ativador de Plasminogênio Tecidual , Humanos , Apolipoproteínas B/sangue , Aterosclerose/sangue , Aterosclerose/metabolismo , Hepatócitos/metabolismo , Lipoproteínas VLDL/metabolismo , Inibidor 1 de Ativador de Plasminogênio/sangue , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL
7.
Immunol Rev ; 319(1): 65-80, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37158427

RESUMO

The phagocytosis of dying cells by macrophages, termed efferocytosis, is a tightly regulated process that involves the sensing, binding, engulfment, and digestion of apoptotic cells. Efferocytosis not only prevents tissue necrosis and inflammation caused by secondary necrosis of dying cells, but it also promotes pro-resolving signaling in macrophages, which is essential for tissue resolution and repair following injury or inflammation. An important factor that contributes to this pro-resolving reprogramming is the cargo that is released from apoptotic cells after their engulfment and phagolysosomal digestion by macrophages. The apoptotic cell cargo contains amino acids, nucleotides, fatty acids, and cholesterol that function as metabolites and signaling molecules to bring about this re-programming. Here, we review efferocytosis-induced changes in macrophage metabolism that mediate the pro-resolving functions of macrophages. We also discuss various strategies, challenges, and future perspectives related to drugging efferocytosis-fueled macrophage metabolism as strategy to dampen inflammation and promote resolution in chronic inflammatory diseases.


Assuntos
Apoptose , Fagocitose , Humanos , Macrófagos/metabolismo , Inflamação/metabolismo , Necrose/metabolismo
8.
JHEP Rep ; 5(5): 100716, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37035456

RESUMO

Background & Aims: Non-alcoholic steatohepatitis (NASH)-induced liver fibrosis is emerging as the most common cause of liver disease. For evaluation of therapies, there is a pressing need to identify non-invasive, mechanism-based biomarkers. A pro-fibrotic process relevant to human NASH involves a pathway in which a transcriptional regulator called TAZ (WWTR1) in hepatocytes induces the secretion of pro-fibrotic Indian hedgehog (IHH). We therefore reasoned that circulating IHH may be a useful mechanism-based marker to assess changes in NASH fibrosis. Methods: Circulating IHH was assessed in wild-type and hepatocyte-TAZ-silenced NASH mice and in three separate cohorts of patients with mild-moderate NASH. Results: Circulating IHH was elevated in mice with diet-induced NASH compared with chow-fed mice or with NASH mice in which hepatocyte TAZ was silenced, which is an effective means to decrease NASH fibrosis. In patients with fatty liver disease with or without NASH, NASH fibrosis was associated with increased concentrations of circulating IHH. Conclusions: The results of these analyses support further investigation to determine whether circulating IHH may be useful as a mechanism-based indicator of target engagement in anticipated future clinical trials testing NASH fibrosis therapies that block the IHH pathway. Impact and implications: Non-alcoholic steatohepatitis (NASH)-induced liver fibrosis is a common cause of liver disease. Circulating biomarkers that reflect liver fibrosis in NASH would be very useful to evaluate therapies. One mechanism of NASH fibrosis with potential as a therapeutic target involves a liver-secreted protein called Indian hedgehog (IHH). We report that circulating levels of IHH in experimental and human NASH associates with NASH and NASH-associated liver fibrosis, providing the premise for further investigation into using circulating IHH to evaluate anticipated future NASH therapies that block the IHH pathway in liver.

9.
Gastroenterology ; 164(7): 1279-1292, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36894036

RESUMO

BACKGROUND & AIMS: Despite recent progress, long-term survival remains low for hepatocellular carcinoma (HCC). The most effective HCC therapies target the tumor immune microenvironment (TIME), and there are almost no therapies that directly target tumor cells. Here, we investigated the regulation and function of tumor cell-expressed Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in HCC. METHODS: HCC was induced in mice by Sleeping Beauty-mediated expression of MET, CTNNB1-S45Y, or TAZ-S89A, or by diethylnitrosamine plus CCl4. Hepatocellular TAZ and YAP were deleted in floxed mice via adeno-associated virus serotype 8-mediated expression of Cre. TAZ target genes were identified from RNA sequencing, confirmed by chromatin immunoprecipitation, and evaluated in a clustered regularly interspaced short palindromic repeats interference (CRISPRi) screen. TEA domain transcription factors (TEADs), anillin (ANLN), Kif23, and programmed cell death protein ligand 1 were knocked down by guide RNAs in dead clustered regularly interspaced short palindromic repeats-associated protein 9 (dCas9) knock-in mice. RESULTS: YAP and TAZ were up-regulated in murine and human HCC, but only deletion of TAZ consistently decreased HCC growth and mortality. Conversely, overexpression of activated TAZ was sufficient to trigger HCC. TAZ expression in HCC was regulated by cholesterol synthesis, as demonstrated by pharmacologic or genetic inhibition of 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), farnesyl pyrophosphate synthase, farnesyl-diphosphate farnesyltransferase 1 (FDFT1), or sterol regulatory element-binding protein 2 (SREBP2). TAZ- and MET/CTNNB1-S45Y-driven HCC required the expression of TEAD2 and, to a lesser extent, TEAD4. Accordingly, TEAD2 displayed the most profound effect on survival in patients with HCC. TAZ and TEAD2 promoted HCC via increased tumor cell proliferation, mediated by TAZ target genes ANLN and kinesin family member 23 (KIF23). Therapeutic targeting of HCC, using pan-TEAD inhibitors or the combination of a statin with sorafenib or anti-programmed cell death protein 1, decreased tumor growth. CONCLUSIONS: Our results suggest the cholesterol-TAZ-TEAD2-ANLN/KIF23 pathway as a mediator of HCC proliferation and tumor cell-intrinsic therapeutic target that could be synergistically combined with TIME-targeted therapies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Proteínas de Sinalização YAP/metabolismo
10.
Nat Metab ; 5(3): 431-444, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797420

RESUMO

Resolving-type macrophages prevent chronic inflammation by clearing apoptotic cells through efferocytosis. These macrophages are thought to rely mainly on oxidative phosphorylation, but emerging evidence suggests a possible link between efferocytosis and glycolysis. To gain further insight into this issue, we investigated molecular-cellular mechanisms involved in efferocytosis-induced macrophage glycolysis and its consequences. We found that efferocytosis promotes a transient increase in macrophage glycolysis that is dependent on rapid activation of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 (PFKFB2), which distinguishes this process from glycolysis in pro-inflammatory macrophages. Mice transplanted with activation-defective PFKFB2 bone marrow and then subjected to dexamethasone-induced thymocyte apoptosis exhibit impaired thymic efferocytosis, increased thymic necrosis, and lower expression of the efferocytosis receptors MerTK and LRP1 on thymic macrophages compared with wild-type control mice. In vitro mechanistic studies revealed that glycolysis stimulated by the uptake of a first apoptotic cell promotes continual efferocytosis through lactate-mediated upregulation of MerTK and LRP1. Thus, efferocytosis-induced macrophage glycolysis represents a unique metabolic process that sustains continual efferocytosis in a lactate-dependent manner. The differentiation of this process from inflammatory macrophage glycolysis raises the possibility that it could be therapeutically enhanced to promote efferocytosis and resolution in chronic inflammatory diseases.


Assuntos
Ácido Láctico , Fagocitose , Animais , Camundongos , c-Mer Tirosina Quinase/metabolismo , Inflamação/metabolismo , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia
11.
Nat Commun ; 13(1): 7929, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566259

RESUMO

Phagocytic clearance of dying cells, termed efferocytosis, is essential for maintaining tissue homeostasis, yet our understanding of efferocytosis regulation remains incomplete. Here we perform a FACS-based, genome-wide CRISPR knockout screen in primary mouse macrophages to search for novel regulators of efferocytosis. The results show that Wdfy3 knockout in macrophages specifically impairs uptake, but not binding, of apoptotic cells due to defective actin disassembly. Additionally, WDFY3 interacts with GABARAP, thus facilitating LC3 lipidation and subsequent lysosomal acidification to permit the degradation of apoptotic cell components. Mechanistically, while the C-terminus of WDFY3 is sufficient to rescue the impaired degradation induced by Wdfy3 knockout, full-length WDFY3 is required to reconstitute the uptake of apoptotic cells. Finally, WDFY3 is also required for efficient efferocytosis in vivo in mice and in vitro in primary human macrophages. This work thus expands our knowledge of the mechanisms of macrophage efferocytosis, as well as supports genome-wide CRISPR screen as a platform for interrogating complex functional phenotypes in primary macrophages.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Relacionadas à Autofagia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Macrófagos , Fagocitose , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Células Cultivadas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Fagocitose/genética
12.
Sci Transl Med ; 14(672): eabp8309, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36417485

RESUMO

Necroptosis contributes to hepatocyte death in nonalcoholic steatohepatitis (NASH), but the fate and roles of necroptotic hepatocytes (necHCs) in NASH remain unknown. We show here that the accumulation of necHCs in human and mouse NASH liver is associated with an up-regulation of the "don't-eat-me" ligand CD47 on necHCs, but not on apoptotic hepatocytes, and an increase in the CD47 receptor SIRPα on liver macrophages, consistent with impaired macrophage-mediated clearance of necHCs. In vitro, necHC clearance by primary liver macrophages was enhanced by treatment with either anti-CD47 or anti-SIRPα. In a proof-of-concept mouse model of inducible hepatocyte necroptosis, anti-CD47 antibody treatment increased necHC uptake by liver macrophages and inhibited markers of hepatic stellate cell (HSC) activation, which is responsible for liver fibrogenesis. Treatment of two mouse models of diet-induced NASH with anti-CD47, anti-SIRPα, or AAV8-H1-shCD47 to silence CD47 in hepatocytes increased the uptake of necHC by liver macrophages and decreased markers of HSC activation and liver fibrosis. Anti-SIRPα treatment avoided the adverse effect of anemia found in anti-CD47-treated mice. These findings provide evidence that impaired clearance of necHCs by liver macrophages due to CD47-SIRPα up-regulation contributes to fibrotic NASH, and suggest therapeutic blockade of the CD47-SIRPα axis as a strategy to decrease the accumulation of necHCs in NASH liver and dampen the progression of hepatic fibrosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/complicações , Camundongos Endogâmicos C57BL , Cirrose Hepática/complicações , Hepatócitos , Macrófagos , Antígeno CD47
13.
Nature ; 610(7931): 356-365, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198802

RESUMO

Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Células Estreladas do Fígado , Neoplasias Hepáticas , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Colágeno Tipo I/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Progressão da Doença , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos , Humanos , Cirrose Hepática/complicações , Neoplasias Hepáticas/patologia , Camundongos , Miofibroblastos/patologia
15.
Nat Metab ; 4(4): 444-457, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35361955

RESUMO

Efferocytosis, the clearance of apoptotic cells (ACs) by macrophages, is critical for tissue resolution, with defects driving many diseases. Mechanisms of efferocytosis-mediated resolution are incompletely understood. Here, we show that AC-derived methionine regulates resolution through epigenetic repression of the extracellular signal-regulated kinase 1/2 (ERK1/2) phosphatase Dusp4. We focus on two key efferocytosis-induced pro-resolving mediators, prostaglandin E2 (PGE2) and transforming growth factor beta 1 (TGF-ß1), and show that efferocytosis induces prostaglandin-endoperoxide synthase 2/cyclooxygenase 2 (Ptgs2/COX2), leading to PGE2 synthesis and PGE2-mediated induction of TGF-ß1. ERK1/2 phosphorylation/activation by AC-activated CD36 is necessary for Ptgs2 induction, but this is insufficient owing to an ERK-DUSP4 negative feedback pathway that lowers phospho-ERK. However, subsequent AC engulfment and phagolysosomal degradation lead to Dusp4 repression, enabling enhanced p-ERK and induction of the Ptgs2-PGE2-TGF-ß1 pathway. Mechanistically, AC-derived methionine is converted to S-adenosylmethionine, which is used by DNA methyltransferase-3A (DNMT3A) to methylate Dusp4. Bone-marrow DNMT3A deletion in mice blocks COX2/PGE2, TGF-ß1, and resolution in sterile peritonitis, apoptosis-induced thymus injury and atherosclerosis. Knowledge of how macrophages use AC-cargo and epigenetics to induce resolution provides mechanistic insight and therapeutic options for diseases driven by impaired resolution.


Assuntos
DNA Metiltransferase 3A/metabolismo , Metionina , Fator de Crescimento Transformador beta1 , Animais , Apoptose , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Macrófagos/metabolismo , Metionina/metabolismo , Camundongos , Prostaglandinas E/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
16.
Sci Transl Med ; 14(639): eabe5795, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35385339

RESUMO

Fibrosis contributes to ~45% of deaths in western countries. In chronic liver disease, fibrosis is a major factor determining outcomes, but efficient antifibrotic therapies are lacking. Although platelet-derived growth factor and transforming growth factor-ß constitute key fibrogenic mediators, they do not account for the well-established link between cell death and fibrosis in the liver. Here, we hypothesized that damage-associated molecular patterns (DAMPs) may link epithelial cell death to fibrogenesis in the injured liver. DAMP receptor screening identified purinergic receptor P2Y14 among several candidates as highly enriched in hepatic stellate cells (HSCs), the main fibrogenic cell type of the liver. Conversely, P2Y14 ligands uridine 5'-diphosphate (UDP)-glucose and UDP-galactose were enriched in hepatocytes and were released upon different modes of cell death. Accordingly, ligand-receptor interaction analysis that combined proteomic and single-cell RNA sequencing data revealed P2Y14 ligands and P2Y14 receptor as a link between dying cells and HSCs, respectively. Treatment with P2Y14 ligands or coculture with dying hepatocytes promoted HSC activation in a P2Y14-dependent manner. P2Y14 ligands activated extracellular signal-regulated kinase (ERK) and Yes-associated protein (YAP) signaling in HSCs, resulting in ERK-dependent HSC activation. Global and HSC-selective P2Y14 deficiency attenuated liver fibrosis in multiple mouse models of liver injury. Functional expression of P2Y14 was confirmed in healthy and diseased human liver and human HSCs. In conclusion, P2Y14 ligands and their receptor constitute a profibrogenic DAMP pathway that directly links cell death to fibrogenesis.


Assuntos
Células Estreladas do Fígado , Hepatócitos , Receptores Purinérgicos P2Y , Receptores Purinérgicos P2 , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Humanos , Ligantes , Fígado/metabolismo , Cirrose Hepática/patologia , Camundongos , Proteômica , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Análise de Célula Única , Difosfato de Uridina/metabolismo , Proteínas de Sinalização YAP
17.
Nat Protoc ; 17(3): 748-780, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121853

RESUMO

Macrophages in atherosclerotic lesions promote plaque progression and are an attractive therapeutic target in cardiovascular research. Here we present a protocol for synthesis of small interfering RNA (siRNA) nanoparticles (NP) that target lesional macrophages as a potential treatment for atherosclerosis. Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) activity in macrophages of advanced human and mouse atherosclerotic plaques drives necrosis by downregulating the expression of the efferocytosis receptor MerTK. Therefore, selective inhibition of CaMKIIγ in lesional macrophages holds great promise for the treatment of advanced atherosclerosis. We recently developed a siRNA NP platform that can selectively silence CaMKIIγ in macrophages, resulting in increased plaque stability. We provide a detailed protocol for the synthesis of NP components, the preparation and characterization (physicochemical and in vitro) of siRNA NPs, and the evaluation of in vivo therapeutic effects of siRNA NPs and their biocompatibility in atherosclerotic mice. Our siRNA-loaded polymer-lipid hybrid NPs are constructed via a robust self-assembly method, exhibiting excellent in vivo features for systemic siRNA delivery. Following this protocol, it takes 3-5 d to prepare the siRNA NPs, 8-10 d to characterize the NPs and 4-5 weeks to evaluate their therapeutic effects in established atherosclerotic mice. By changing the RNA molecules loaded in the NPs, lesional macrophages can be targeted for the exploration and validation of new targets/pathways in atherosclerosis.


Assuntos
Aterosclerose , Nanopartículas , Placa Aterosclerótica , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/terapia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/terapia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
18.
J Hepatol ; 76(4): 910-920, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34902531

RESUMO

BACKGROUND & AIMS: Non-alcoholic steatohepatitis (NASH) is a leading cause of hepatocellular carcinoma (HCC), but mechanisms linking NASH to eventual tumor formation remain poorly understood. Herein, we investigate the role of TAZ/WWTR1, which is induced in hepatocytes in NASH, in the progression of NASH to HCC. METHODS: The roles of hepatocyte TAZ and its downstream targets were investigated in diet-induced and genetic models of NASH-HCC using gene-targeting, adeno-associated virus 8 (AAV8)-H1-mediated gene silencing, or AAV8-TBG-mediated gene expression. The biochemical signature of the newly elucidated pathway was probed in liver specimens from humans with NASH-HCC. RESULTS: When hepatocyte-TAZ was silenced in mice with pre-tumor NASH using AAV8-H1-shTaz (short-hairpin Taz), subsequent HCC tumor development was suppressed. In this setting, the tumor-suppressing effect of shTaz was not dependent of TAZ silencing in the tumors themselves and could be dissociated from the NASH-suppressing effects of shTaz. The mechanism linking pre-tumor hepatocyte-TAZ to eventual tumor formation involved TAZ-mediated induction of the NOX2-encoding gene Cybb, which led to NADPH-mediated oxidative DNA damage. As evidence, DNA damage and tumor formation could be suppressed by treatment of pre-tumor NASH mice with AAV8-H1-shCybb; AAV8-TBG-OGG1, encoding the oxidative DNA-repair enzyme 8-oxoguanine glycosylase; or AAV8-TBG-NHEJ1, encoding the dsDNA repair enzyme non-homologous end-joining factor 1. In surrounding non-tumor tissue from human NASH-HCC livers, there were strong correlations between TAZ, NOX2, and oxidative DNA damage. CONCLUSIONS: TAZ in pre-tumor NASH-hepatocytes, via induction of Cybb and NOX2-mediated DNA damage, contributes to subsequent HCC tumor development. These findings illustrate how NASH provides a unique window into the early molecular events that can lead to tumor formation and suggest that NASH therapies targeting TAZ might also prevent NASH-HCC. LAY SUMMARY: Non-alcoholic steatohepatitis (NASH) is emerging as the leading cause of a type of liver cancer called hepatocellular carcinoma (HCC), but molecular events in pre-tumor NASH hepatocytes leading to HCC remain largely unknown. Our study shows that a protein called TAZ in pre-tumor NASH-hepatocytes promotes damage to the DNA of hepatocytes and thereby contributes to eventual HCC. This study reveals a very early event in HCC that is induced in pre-tumor NASH, and the findings suggest that NASH therapies targeting TAZ might also prevent NASH-HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Neoplasias Hepáticas , NADPH Oxidase 2 , Hepatopatia Gordurosa não Alcoólica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Modelos Animais de Doenças , Hepatócitos/metabolismo , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
19.
Nat Rev Cardiol ; 19(4): 228-249, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34759324

RESUMO

Nanotechnology could improve our understanding of the pathophysiology of atherosclerosis and contribute to the development of novel diagnostic and therapeutic strategies to further reduce the risk of cardiovascular disease. Macrophages have key roles in atherosclerosis progression and, therefore, macrophage-associated pathological processes are important targets for both diagnostic imaging and novel therapies for atherosclerosis. In this Review, we highlight efforts in the past two decades to develop imaging techniques and to therapeutically manipulate macrophages in atherosclerotic plaques with the use of rationally designed nanoparticles. We review the latest progress in nanoparticle-based imaging modalities that can specifically target macrophages. Using novel molecular imaging technology, these modalities enable the identification of advanced atherosclerotic plaques and the assessment of the therapeutic efficacy of medical interventions. Additionally, we provide novel perspectives on how macrophage-targeting nanoparticles can deliver a broad range of therapeutic payloads to atherosclerotic lesions. These nanoparticles can suppress pro-atherogenic macrophage processes, leading to improved resolution of inflammation and stabilization of plaques. Finally, we propose future opportunities for novel diagnostic and therapeutic strategies and provide solutions to challenges in this area for the purpose of accelerating the clinical translation of nanomedicine for the treatment of atherosclerotic vascular disease.


Assuntos
Aterosclerose , Nanopartículas , Placa Aterosclerótica , Aterosclerose/diagnóstico , Aterosclerose/tratamento farmacológico , Humanos , Macrófagos/patologia , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Placa Aterosclerótica/diagnóstico , Placa Aterosclerótica/tratamento farmacológico
20.
Cell Metab ; 33(12): 2445-2463.e8, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34784501

RESUMO

Apoptotic cell clearance by macrophages (efferocytosis) promotes resolution signaling pathways, which can be triggered by molecules derived from the phagolysosomal degradation of apoptotic cells. We show here that nucleotides derived from the hydrolysis of apoptotic cell DNA by phagolysosomal DNase2a activate a DNA-PKcs-mTORC2/Rictor pathway that increases Myc to promote non-inflammatory macrophage proliferation. Efferocytosis-induced proliferation expands the pool of resolving macrophages in vitro and in mice, including zymosan-induced peritonitis, dexamethasone-induced thymocyte apoptosis, and atherosclerosis regression. In the dexamethasone-thymus model, hematopoietic Rictor deletion blocked efferocytosing macrophage proliferation, apoptotic cell clearance, and tissue resolution. In atherosclerosis regression, silencing macrophage Rictor or DNase2a blocked efferocyte proliferation, apoptotic cell clearance, and plaque stabilization. In view of previous work showing that other types of apoptotic cell cargo can promote resolution in individual efferocytosing macrophages, the findings here suggest that signaling-triggered apoptotic cell-derived nucleotides can amplify this benefit by increasing the number of these macrophages.


Assuntos
Macrófagos , Fagocitose , Animais , Apoptose/genética , Proliferação de Células , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...